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ABSTRACT

A modified Leung-Griffths correlation for the near-critical phase boundary of

ammonia-water is extrapolated to low pressure.  The extrapolation is based on the observation

that, on a plot of logarithm of pressure versus inverse temperature, dew and bubble isopleths

form straight lines below the critical region.  The extrapolation is performed both directly and

with additional optimization to a chosen low-pressure data set.  On the bubble side, the method

yields a useful baseline calculation against which different experimental measurements can be

tested for mutual consistency, but the approach is considerably less successful on the dew side.
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1. Introduction

Vapor-liquid equilibrium of binary mixtures has in general been analyzed by two separate

techniques over two distinct thermodynamic regions.  At temperatures and pressures sufficiently

removed from critical conditions, equations of state that represent pressure ( P ) as a function

of temperature ( T ), density ( D ), and mole fraction ( x ) can yield accurate phase boundaries,

except in some cases for coexisting liquid densities.  Such equations range from a simple cubic

EOS such as Redlich-Kwong [1] and Peng-Robinson [2] to many-parameter representations

such as the 32-term modified Benedict-Webb-Rubin equation of state [3, 4].  On the other hand,

in the critical region special scaling-law models such as the Leung-Griffiths model [5] in

modified form [6,7] and related scaling-law models [8] can yield a superior correlation of the

P-T-D-x phase boundary.

Each technique generally works well in its own regime but leads to difficulties in the

opposite regime.  Analytic equations of state yield classical and incorrect critical exponents, and

thus must fail within some region close to the critical locus.  On the other hand, scaling-law

models are in some form an expansion of thermodynamic variables around the critical point, and

that expansion has a limited range of validity.  A useful guideline is that for the P-T-x surface,

equations of state are reliable up to about three-fourths of the critical pressure and scaling-law

models are reliable from the critical pressure down to about half that value.

In this work, we attempt to overcome in part the limitations of the scaling-law model by

using it to construct a mathematical representation of the P-T-x surface of a particular mixture

down to atmospheric pressure.  That mixture is ammonia + water, which is of interest due to its

use in the Kalina power cycle as an alternative to steam power plants [9].  Our work has been

part of a larger project to develop an accurate correlation for this mixture [10-12].



2. Phase Equilibria Data for Ammonia-Water

The ammonia-water system has been studied in the critical region by Gillespie, et al. [13],

Rizvi and Heidemann [14], Sassen, et al. [15], and Tsiklis, et al. [16], who presented data only

in graphical form.  There is considerable disagreement among these sources.  As an example,

for P-T critical locus Refs. [13] and [14] indicate a maximum in the pressure, but no such

pressure was found in Refs. [15] and [16].

Low-pressure dew and bubble point measurements were presented by the cited authors

as well as by Müller, et al. [17], Guillevic, et al. [18], and Smolen, et al. [19].  Some conclusions

of Ref. 19 suggested that this mixture may be highly non-ideal and not easily described by

standard equation-of-state methods.  In particular, the authors attempted a correlation with the

Peng-Robinson equation [2] and adjustable binary interaction parameters, but did so in two

unusual ways.  First, while in the customary usage of (1-k ) as a multiplicative factor theij 

interaction parameter k  is in magnitude much less than one, they required values of | k  | asi j             i j

large as 1.3.  Second, they required separate values of  k  on the liquid and vapor sides of  thei j

phase boundary,  which  is not the customary practice.

While equivalent difficulties were not found in the subsequent application of

many-parameter equations of state to this mixture [11, 12], the conclusions of Smolen, et al.

suggested that an alternative to the equation of state at low pressure might be useful.  Also,

since an important initial part of our project was to evaluate and to test the mutual consistency

of low-pressure data, we felt it appropriate to establish a simple and fairly accurate

representation of the phase boundary so that we could study deviations of the experimental data

from that baseline representation.

3. Extrapolation of the Modified Leung-Griffiths Model



1n P ' A1 % A2 /T (1)

It is well known that, on a semilogarithmic plot of pressure versus inverse temperature,

the vapor pressure curve of a pure fluid is approximately a straight line,

For constant-composition dew-bubble curves, Van Poolen and Graham [19], and Bloomer

and Parent [20], have noted that the dew and bubble curves each obey Eq. (1) except in a region

near the critical point over which they curve and join together, as shown schematically in Figure

1.  Therefore, except close to the critical locus, the phase boundary can be represented by two

surfaces of constant-composition loci given by Eq. (1) with A  and A  as functions of x, for 01  2

< x < 1.  There will be separate functions for the dew side and the bubble side, but they must join

at the pure-fluid limits, x = 0 and x = 1.

The modified Leung-Griffiths  model  [6]  has been found to be reliable  over a  range -0.1

< t < 0, where t is a reduced temperature distance such that  t = 0 is the critical locus and t =

-0.1 is approximately the locus of half the mixture critical pressure.  The equations for this model

have been presented elsewhere [6, 22] and will not be repeated here.  On a semilogarithmic plot,

dew-bubble curves generated  from  the  model follow  the  pattern of Fig. 1.

An initial study of the various, mutually inconsistent sets of data in the critical region

[12-15] suggested that the critical locus of Sassen, et al. [15] was the most credible.  We used

those data as input for the initial modified Leung-Griffiths correlation used in this work, and

which was then compared against a preliminary equation of state by Friend, et al. [10].

Subsequently, Rainwater and Tillner-Roth [12] iteratively used the modified Leung-Griffiths

model and a Helmholtz equation of state [11] to obtain an optimal overall correlation.  That final

model and the model of the present work differ somewhat in dew curve predictions, but



Ai ' E
5

j'1
Ai j x

j . (2)

essentially yield the same bubble curves.

4. Results.

Our efforts to extrapolate to low pressure both the bubble and dew curves were found to

be much more successful for the bubble curves, which we first discuss.  Our initial approach was

a direct extrapolation.  Bubble curves were calculated from the modified Leung-Griffiths model

over the interval 0 < x < 1 in steps of 0.1, where x = 1 is pure ammonia.  From the

semilogarithmic plot, we located the limits of the linear regime of each bubble curve  and fitted

each linear  segment to Eq. (1).  We then fitted A  and A  to a fifth-order polynomial in x,1  2

Our representation of the liquid phase boundary was then compared with data from various

experimental sources [13, 15, 17-19] at pressures below 11.28 MPa, the critical pressure of pure

ammonia.

The results are shown in Figure 2.  For each experimental bubble point (P,T,x), we use

Eqs. (1) and (2) first to calculate D given the experimental T, and then to calculate T given the

experimental D.  The calculated values of P and T are plotted in the figure.  Lines have been

drawn through the points as an aid to the eye, and the experimental temperature of each

isotherm is indicated.  Ideally, with both highly accurate data and a model, the points of each

isotherm would lie on a vertical line at the temperature given by the horizontal axis.  It is seen

from Fig. 2 that the method works fairly well down to pressures of 3 MPa and temperatures of

400 K, but breaks down below those limits, with considerable spurious curvature at the lowest

pressures and temperatures.



Our second technique was to analyze the bubble curves at each of the compositions

measured by Smolen, et al. [19], as listed on Figure 3.  Model bubble curves were calculated at

these compositions, and Eq. (1) was fitted for each composition to both the linear region of the

model curves and the data at lower pressure of Smolen, et al. simultaneously. Figure 3 shows

the results for each isotherm.  The resulting A  and A  were then again fitted to Eq. (2) as a1  2

function of x, and the resulting correlation was tested against the same set of data at lower

pressures as in the previous case.

The results are shown on Fig. 4, analogously to Fig. 2.  With the inclusion of input from

Ref. 19, the correlation is substantially improved, especially at the lower pressures and

temperatures.  Such a representation satisfies our objective for a reasonable baseline description

of the phase boundary for an initial test of the mutual consistency of the various data sets.

Figure 5 shows the deviation plot in temperature, with experimental temperature as the

independent variable.  Most of the predictions are within 4 K, and there is no evidence of

significant bias.   Furthermore, our results indicate that the five separate data sets, unlike those

in the critical region, are for the most part mutually consistent.

The same two techniques were tried on the dew side, but with much less satisfactory

results.  The problem in part was that the critical-region data of Sassen, et al. [15] was much

more thorough for bubble points than dew points.  Consequently, the initial modified

Leung-Griffiths correlation was much more uncertain on the dew side, as suggested by the work

of Friend, et al. [10] and the subsequent iterative procedure of Rainwater and Tillner-Roth [12],

and mismatches between the critical-region model and the data of Ref. 19 were found in our

procedure for the dew, but not the bubble curves.

There were indications, however, that the problems on the vapor side have more



fundamental origins.  While on the liquid side A  and A  were smooth functions of x, on the1  2

vapor side we found an abrupt peak in those values near x = 0.9, followed by a sharp drop to

x = 1.  Also, in general the curved region of a dew curve on our semilogarithmic plots is larger

and thus the linear region smaller than for the corresponding bubble curve.  In fact, over the

usual range of the modified Leung-Griffiths model ( -0.1 < t < 0 ), we did not find any linear

regime for x = 0.1.   The vapor phase boundary appears to be in general more irregular than the

liquid phase boundary, which thereby makes the present methods harder to implement.

5. Conclusions.

By linearly extrapolating a critical-region model to lower pressure in the space of ln P and

inverse temperature, we have constructed a useful approximate description of the liquid phase

boundary of ammonia-water.   Simple extrapolation yielded a good description down to 3 MPa

for this mixture, for which the pure fluid critical pressures are 11.28 MPa and 22.09 MPa.  With

the inclusion of a chosen set of low-pressure data as input to the fitting procedure, the

description became useful down to atmospheric pressure.

It should be understood that our description is a mathematical representation, not a

thermodynamic model, of the phase boundary.  Self-consistent equations of state yield phase

boundaries that must satisfy thermodynamic consistency tests, and the modified Leung-Griffiths

model, since it is derived from a potential function and the differential equations of

thermodynamics, must also be thermodynamically consistent.  However, thermodynamic

consistency does not necessarily hold for Eqs. (1) and (2) as fitted to VLE data.  The present

technique could, however, be used to calculate phase boundary points that then could be used

as input for an optimized equation of state that is thermodynamically consistent.

For many mixtures, equations of state ( even cubic ones ) should be preferable to the



present technique.  However, the present methods are useful in situations where a nonideal

mixture might not be describable by simple equations of state, as suggested by Smolen, et al.

[19] for this mixture, and where a critical locus and critical-region VLE data are available.  The

present results are also not recommended as the best current values for the bubble surface of

ammonia-water; for that one should use the Helmholtz equation of Tillner-Roth and Friend [11]

or, near the critical locus, the iterated scaling-law model of Rainwater and Tillner-Roth [12].

Nevertheless, the present methods have proven useful for initial analysis in the development of

those models and should be valuable for the study of other similar mixtures.

This work was supported in part by the U. S. Department of Energy, Geothermal Division.  The

authors thank Sergei Kiselev and Torsten Lüddecke for valuable suggestions.



FIGURE CAPTIONS

Figure 1.  Constant-composition dew-bubble curve plotted as ln P versus 1/T (schematic), solid

curve, and critical locus, dashed curve, with critical point (circle).  Sufficiently below the critical

pressure, both the dew and bubble curves become straight lines to a good approximation.

Figure 2.  Comparison of experimental data below the critical region and temperature

predictions from direct extrapolation of the modified Leung-Griffiths model for ammonia-water.

Figure 3.  Extrapolated Leung-Griffiths model as optimized in part to the data of Smolen, et al.

[19].

Figure 4.  Comparison of experimental data below the critical region and temperature

predictions from the optimized extrapolation of the Leung-Griffiths model in Fig. 3.

Figure 5.  Deviation plot for the optimized extrapolation of the Leung-Griffiths model for

ammonia-water.
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